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ABSTRACT 

Arterial spin labeling (ASL) refers to the use of endogenous arterial water as the perfusion tracer. To 

differentiate the tracer from the background tissue, the net magnetization of arterial water flowing proximally to the 

brain is modified with respect to the net magnetization of brain water. This review is focused on describing two 

basic approaches to obtain images of cerebral blood flow (CBF): pulsed ASL (PASL) and continuous ASL (CASL). 

Advantages and disadvantages to either approach are listed, along with potential sources of artifacts and pitfalls. 

INTRODUCTION 

Cerebral blood flow (CBF) can be measured by following the kinetics of a diffusible tracer as it perfuses the 

brain. In methods such as positron emission tomography (PET), single photon emission computerized tomography 

(SPECT) or quantitative autoradiography (QAR), the tracer is exogenously administered and is imaged against a 

quiet background, which has the advantages of high sensitivity and robustness of quantification, but also the 

disadvantages of being invasive and of providing generally poor spatial resolution due to the small amount of tracer 

used relative to the size of the brain. The same principles of tracer kinetics have laid the foundation for the use of 

MR-detectable, exogenously administered, diffusible tracers, such as 2H2O, CH19F3, H2
17O or 129Xe. However, the 

advantages of using an endogenous perfusion tracer, namely of proportioning a non-invasive method that allows 

repeated measurements of CBF to be performed indefinitely, motivated the development of arterial spin labeling 

techniques. Arterial spin labeling refers to the use of endogenous arterial water as the perfusion tracer. Unlike other 

methods for measuring CBF, in ASL the tracer is imaged against the brain water background. Therefore, the general 

principle behind the ASL techniques is to differentiate the net magnetization of arterial water flowing proximally to 



the brain from the net magnetization of brain water. As the labeled water flows through the brain, a net decrease in 

magnetization is obtained due to the mixing (with or without exchange) between the existing local magnetization 

and the one from the freshly arrived labeled water, which is proportional to the flow rate. Therefore, this decrease in 

magnetization may be used to calculate CBF. 

Traditionally, ASL techniques have been presented as belonging to one of two basic implementation 

categories. In the first approach, arterial water is continuously labeled proximally to the region of interest in the 

brain. This gives rise to a steady-state where the regional brain magnetization reaches a new equilibrium value 

governed by CBF in the form of the rate of arrival of labeled blood, by the magnetic relaxation rate of the labeling 

spins, and by the brain-blood water partition coefficient. This approach is referred to as continuous ASL (CASL). In 

the second approach, a single, yet large volume of arterial blood is dynamically labeled proximally to the region of 

interest and allowed to flow into the tissue prior to data collection. This approach is generally referred to as pulsed 

ASL (PASL). Both approaches will be described in detail in the following sections, and special emphasis will be 

given to advantages and disadvantages of either approach. In addition to the following material, ASL and other MR-

based methods to measure CBF have been extensively reviewed in the literature (1-5).  

GENERAL PRINCIPLES OF ASL 

The formalism for ASL closely follows the one developed by Kety for monitoring the kinetics of freely 

diffusible tracers (6, 7). Following the Kety formalism, the brain tissue magnetization can be described by the Bloch 

equations, modified to include the effects of CBF: 
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where  is the brain tissue magnetization per gram of tissue, is the equilibrium value of , is the 

longitudinal brain tissue relaxation time constant, CBF is the cerebral blood flow expressed in units of 
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and and  are the arterial and venous blood magnetization per ml of blood. The above equation describes 

brain tissue as a single-compartment that is constantly receiving blood from the arterial side and losing blood water 

on the venous side. Assuming water to be a freely-diffusible tracer, the venous magnetization equals the brain 

magnetization according to: 
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where λ is the brain-blood water partition coefficient, defined as the ratio of the amount of water per gram of tissue 

and the amount of water per ml of blood. In equilibrium, the amount of water delivered by the arterial vasculature to 

the tissue compartment must equal the amount of water leaving that compartment on the venous side: 
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Therefore, Eq. [1] can be rewritten as: 
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with the apparent longitudinal relaxation time for tissue water in the presence of perfusion, T1app, and the degree of 

labeling efficiency, α(t), defined as: 
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Equation [4] tells us a number of important things about ASL. First, to cause a change in brain tissue 

magnetization related to perfusion, one needs to label blood (i.e., α(t) must be different than zero). Second, the 

perfusion rate does not instantly change brain tissue magnetization, but it does so with a time constant given by 

T1app. Third, because CBF is only on the order of 60 ml blood/100 g tissue-minute, CBF/λ ≈ 0.01 s-1, the impact of 

CBF on T1app is much too small to allow CBF to be reliably measured from changes in relaxation rates. The 

following sections describe the different approaches to obtain CBF from Eq. [4]. 

CONTINUOUS ARTERIAL SPIN LABELING (CASL) 

CASL was the first implementation of ASL (8, 9). In this approach, arterial water is continuously saturated (α 

≈ 0.5) or inverted (α ≈ 1.0) proximally to the brain for a period long enough to allow the establishment of a steady-

state in brain tissue magnetization. For a constant degree of labeling efficiency α(t) = α, a steady-state 
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Thus, the CBF rate can be obtained from two images obtained with (α ≠ 0) and without (α = 0) labeling: 
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In CASL, inversion of the arterial spins is preferred over saturation as the former produces twice the signal of 

the latter, and the most efficient way to achieve continuous inversion is to use a technique named flow-driven 



adiabatic fast passage (AFP) (10). In AFP, a constant RF pulse of amplitude  is applied off-resonance in the 

presence of a constant gradient along the direction of flow in the arteries being labeled. The frequency-offset 

of the RF pulse is determined by the labeling gradient strength and by desired distance from the plane of inversion 

(called the labeling plane) to the magnet’s isocenter. As they flow with velocity 

labelB1
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aυ along the labeling gradient, the 

arterial spins experience a frequency sweep that mimics old continuous wave NMR experiments. As they pass 

through the labeling plane, they experience an adiabatic inversion which is maintained as they continue to flow 

away from the labeling plane. The conditions for this adiabatic inversion to occur are: 
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Equation [8] imposes several practical conditions to be fulfilled. One of the most important conditions is that 

the arteries must run in a fairly straight segment along the labeling gradient to cause a large enough frequency 

sweep. This imposes a significant constraint in which arteries can be efficiently labeled. For example, in humans, 

labeling must occur inferior to the Circle of Willis where the common carotid arteries and the internal carotid 

arteries are running in the inferior to superior (foot-head) direction. In addition, the inversion condition can only be 

satisfied for arteries with large enough velocities to experience a frequency sweep which is big with respect to the 

relaxation times of arterial blood, but small with respect to the amplitude of the RF pulse applied. Smaller arteries 

with lower flow velocities require the use of proportionally larger gradient strengths so that Eq. [8] is fulfilled. 

While it has been shown that the AFP process is very efficient (11), the degree of inversion at the labeling plane α0 

typically vary from 0.7 to 0.9 (12, 13).  

Although the CASL approach is simple to implement, and produces high SNR compared to PASL approaches 

(see below), it has a few practical disadvantages that must be mentioned. Many MR scanners may not permit the 

continuous operation of their RF amplifiers. In addition, the continuous RF labeling may cause substantial RF power 

deposition in the subject. Although CASL images have been successfully obtained in humans at fields up to 7T, and 

in animals at fields up to 11.7T, SAR may constitute a limiting concern for the routine use of CASL at high 

magnetic field strengths.  

Another complication of CASL is that it induces magnetization transfer (MT) effects (9, 14, 15). This occurs 

because application of long off-resonance RF pulses causes direct saturation of the macromolecular pool in brain 

tissue. Once saturated, this large macromolecular pool exchanges its magnetization with that of “free” tissue water, 

and effectively changes both T1app and the equilibrium magnetization . To overcome this problem, a distal 

labeling of the magnetization is performed in the control experiment to produce identical MT effects. This method 

works well for a single-slice positioned in the center between the proximal and the distal labeling planes. However, 

the long RF pulses used in such techniques are applied concurrently with the longitudinal labeling gradient, thus 

creating a spatial dependence of the MT effects dependent on the slice position. The two main undesirable 

consequences of MT effects are: (a) it reduces the observed signal and affects quantification of CBF; and (b) it 

0
bM



makes it difficult to obtain multi-slice or 3-D coverage of the brain. To overcome such difficulties, a few 

modifications of the original CASL approach have been proposed. Silva et al. proposed the use of a small separate 

labeling coil, placed on the neck to label the common carotid arteries (13). The field-of-view of the labeling coil is 

confined to the neck region and does not reach the brain, thus eliminating off-resonance effects, with the added 

benefit that it also greatly reduces the RF power deposition compared to a volume coil. The two-coil approach has 

also been successfully implemented in humans (16, 17). An alternative way to control for MT effects while allowing 

multi-slice acquisition was proposed by Alsop and Detre, who used a sinusoidal modulation of the control RF pulse 

(18, 19). The application of the amplitude modulated RF during the control phase of the experiment causes a dual 

inversion of the blood magnetization, resulting theoretically in negligible labeling during the control phase. To 

match the MT effects produced during the labeling phase of the experiment, the root mean square RF power is 

carefully adjusted during the control phase. However, imperfections in the double-inversion plane usually result in 

lower labeling efficiency (18). 

PULSED ARTERIAL SPIN LABELING (PASL) 

Unlike CASL, where arterial blood is continuously inverted in a well-defined and extremely thin labeling 

plane, PASL techniques rely on using a short RF pulse to invert all the water magnetization (blood and tissue) 

contained in a thick region or slab proximal to the brain. Several variants of PASL techniques have been proposed, 

as reviewed by Calamante et al. (2) and also by Barbier et al. (3). Following the inversion, blood in this slab flows 

into the region of interest and mixes with the non-inverted brain tissue water during an inflow time TI, at the end of 

which the image is acquired. The control image is acquired in the absence of the slab-selective inversion, so that 

subtraction of the two images according to Eq. [7], modified to include the relaxation of the brain tissue as well as of 

the arterial spins during the interval TI between application of the labeling inversion RF pulse and the signal 

acquisition (20, 21), results in a measurement of CBF: 
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where T1a is the T1 of arterial blood. It is interesting to consider a special case when T1a ≈ T1b = T1, in which case Eq. 

[9] reduces to: 
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where τ is the temporal width of the labeling slab. Eq. [10] has been commonly used to calculate CBF from PASL 

measurements. The maximum signal change occurs when TI = T1app, in which case the PASL signal is only e-1 ≈ 

37% of the signal obtained with CASL. The assumption of T1a ≈ T1b should be used with caution, however, given 

that there are cases when it is not valid, such as when measuring perfusion in white matter or in pathological cases, 

such as in the measurement of tumor blood flow. In such cases Eq. [9] provides a more accurate estimate of CBF. 

The main advantages of PASL over CASL are the closer proximity of the inversion labeling slab to the region 

of interest, which tends to minimize transit time effects, when a good definition of the trailing edge of the bolus of 

label can be achieved. In addition, MT effects are smaller due to the use of short RF labeling pulses, compared to the 

long continuous pulses used in CASL. The main disadvantage of PASL is a reduced sensitivity to flow, since the 

inverted blood water relaxes during the inflow time. 

PITFALLS IN ASL 

A detailed comparison of CASL and PASL techniques can be found in (22). In a nutshell, the major advantage 

of CASL techniques is the higher SNR compared to PASL (theoretically about 2.7 fold, comparing Eq. [7] to Eq. 

[10]), combined with a higher overall degree of labeling efficiency because the labeling plane can, on average, be 

placed closer to the region of interest compared to the thick labeling slabs required in PASL. On the other hand, the 

major advantage of PASL techniques is the lower RF power deposition compared to CASL, an advantage that can 

become really important at high magnetic field strengths, such as 7T and above.  

A few pitfalls afflict the implementation of both CASL and PASL techniques. Knowledge of such sources of 

error is important to ensure optimal application of either approach. 

Transit-time 

In both CASL and PASL approaches, labeled blood must flow from the labeling location to the region of 

interest. This happens in a non-negligible amount of time called the transit-time, δ. During the transit-time, labeled 

water is relaxing with a time constant T1a, so that the major effect of the transit-time is to decrease the effective 

degree of labeling efficiency, α(t) as given by Eq. [5], which now turns into: 
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where α0 is the degree of labeling efficiency measured at the labeling plane for CASL or averaged over the inversion 

slab for PASL. Relaxation of the label due to a non-negligible transit-time imposes an exponential decay of the MRI 

signal for CASL and a linear decay for PASL: 
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While δ is on the order of 250-300 ms in rats (14), it can be equal to T1a in humans and thus significantly 

affects the signal. Fortunately, a relatively simple modification of the standard CASL and PASL techniques can be 

implemented to minimize the effects of transit-time on the quantification of perfusion. For CASL, the introduction 

of a post-labeling delay w ≥ δ between the end of the labeling period and the image acquisition allows for all the 

labeled blood to enter the tissue prior to image acquisition (23). In order to minimize the presence of labeled blood 

in the arterial vessels, it is important to set the post-labeling delay longer than the longest transit-time.  An additional 

advantage of the post-labeling delay is that it allows most of the intravascular signal from labeled blood that is 

destined to regions of the brain other than the region of interest to wash out prior to image acquisition. In this way, 

vascular volume artifacts are minimized. For PASL, the requirement for all the labeled blood to enter the region of 

interest is that TI > τ + δ. Unfortunately, it is hard to control the temporal width of the volume of labeled water, 

since it depends on the spatial extent of the inversion slab, on the flow and on the geometry of the proximal vessels. 

To alleviate this problem, a pulse sequence named QUIPSS II was implemented (24) in which a saturation pulse is 

applied at a time Tsat after the inversion of the same slab. The saturation defines the temporal width of the inverted 

slab to be τ = Tsat.  

Residual Intra-Vascular Labeled Water  

The presence of residual labeled blood in the arteries can cause overestimation of CBF and introduce image 

artifacts in the form of bright spots. This vascular signal contamination comes from large vessels in which blood is 

merely passing through the region of interest on its way to perfuse other distal areas. One possible solution to 

eliminate the signal from these larger vessels consists of applying flow-sensitive crusher gradients (9, 25). However, 

the application of strong bipolar gradients may also attenuate the flow-related signal, so it must be employed with 

great caution. Alternatively, the use of a post-labeling delay as described above can be very effective in removing 

vascular volume artifacts. 

Motion Artifacts 

Because ASL techniques require the subtraction of two images acquired at different time points, in which the 

desired flow-related signal is only a few percent the signal of the control and of the labeled image, the presence of 

motion can significantly degrade image quality and lead to large errors in CBF. This problem can be much reduced 

by the use of ultra-fast imaging sequences, such as EPI or SPIRAL imaging. Furthermore, because the control and 

the labeled images are acquired in an interleaved manner, the effects of motion can be significantly attenuated. 

Recently, the use of background suppression has been proposed as an alternative way to minimize the influence of 

motion on ASL (26-28). 



The Effects of Restricted Exchange and Multiple Compartment Modeling 

It has been observed that water can not be considered a freely diffusible tracer in a strict sense. At normal 

perfusion rates, about 90% of the arterial water leaves the capillaries and exchanges with tissue. However, this 

fraction falls to less than 50% at high flows (29). Therefore, a significant improvement of the original ASL 

formalism is to consider the effects of restricted water exchange between the intravascular and the extravascular 

compartments, manifested in the form of finite capillary water permeability. In addition, the presence of labeled 

water in capillaries and veins should be considered as well. There has been considerable effort in the recent years in 

this direction (30-35).  
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